Publications

An AI-based partial explainable prediction of rubber concrete strength on mobile devices

Published in Construction and Building Materials, 2024

一种部分可解释的轻量化橡胶混凝土强度预测方法

Recommended citation: Jin, X., Yang, X., Jiang, Y., & Li, Y. (2024). An AI-based partial explainable prediction of rubber concrete strength on mobile devices. Construction and Building Materials, 427, 136234. https://doi.org/10.1016/j.conbuildmat.2024.136234 https://authors.elsevier.com/sd/article/S277299152300004X

Comparison of Multimodal RGB-Thermal Fusion Techniques for Exterior Wall Multi-Defect Detection

Published in Journal of Infrastructure Intelligence and Resilience, 2023

面向外墙多缺陷检测的多模态可见光与红外融合技术比较

Recommended citation: Yang, X., Guo, R., & Li, H. (2023). Comparison of multimodal RGB-thermal fusion techniques for exterior wall multi-defect detection. Journal of Infrastructure Intelligence and Resilience, 2(2), 100029. doi:https://doi.org/10.1016/j.iintel.2023.100029 https://authors.elsevier.com/sd/article/S277299152300004X

Automated PPE-Tool pair check system for construction safety using smart IoT

Published in Journal of Building Engineering, 2020

使用智能物联网的施工安全自动化防护设备与工具配对检查系统

Recommended citation: **Yang, X.**, Yu, Y., Shirowzhan, S., sepasgozar, S., & Li, H.* (2020). Automated PPE-Tool pair check system for construction safety using smart IoT. Journal of Building Engineering, 32, 101721. doi:10.1016/j.jobe.2020.101721 https://www.sciencedirect.com/science/article/pii/S23527102203335445

An automatic and non-invasive physical fatigue assessment method for construction workers

Published in Automation in Construction, 2019

一种建筑工人身体疲劳自动无创评估方法

Recommended citation: Yu, Y., Li, H., **Yang, X.***, Kong, L., Luo, X., & Wong, A. Y. L. (2019). An automatic and non-invasive physical fatigue assessment method for construction workers. Automation in Construction, 103, 1-12. doi:10.1016/j.autcon.2019.02.020 http://www.sciencedirect.com/science/article/pii/S0926580518308422

Automatic Pixel-Level Crack Detection and Measurement Using Fully Convolutional Network

Published in Computer-Aided Civil and Infrastructure Engineering, 2018

基于全卷积网络的像素级裂纹自动检测与测量

Recommended citation: **Yang, X.**, Li, H.*, Yu, Y., Luo, X., Huang, T., & Yang, X. (2018). Automatic Pixel-Level Crack Detection and Measurement Using Fully Convolutional Network. Computer-Aided Civil and Infrastructure Engineering, 33(12), 1090-1109. doi:10.1111/mice.12412 https://onlinelibrary.wiley.com/doi/full/10.1111/mice.12412

Computer-Aided Optimization of Surveillance Cameras Placement on Construction Sites

Published in Computer-Aided Civil and Infrastructure Engineering, 2018

建筑工地监控摄像头放置的计算机辅助优化

Recommended citation: **Yang, X.**, Li, H., Huang, T., Zhai, X., Wang, F., & Wang, C.* (2018). Computer-Aided Optimization of Surveillance Cameras Placement on Construction Sites. Computer-Aided Civil and Infrastructure Engineering, 33(12), 1110-1126. doi:doi:10.1111/mice.12385 https://onlinelibrary.wiley.com/doi/full/10.1111/mice.12385

Location-based measurement and visualization for interdependence network on construction sites

Published in Advanced Engineering Informatics, 2017

基于位置信息的建筑工地依赖网络测量与可视化

Recommended citation: **Yang, X.**, Luo, X., Li, H., Luo, X., & Guo, H.* (2017). Location-based measurement and visualization for interdependence network on construction sites. Advanced Engineering Informatics, 34, 36-45. doi:10.1016/j.aei.2017.09.003 https://www.sciencedirect.com/science/article/pii/S1474034617300265

Automated classification of construction site hazard zones by crowd-sourced integrated density maps

Published in Automation in Construction, 2017

通过众包集成密度图对建筑工地危险区进行自动化分类

Recommended citation: Li, H., **Yang, X.***, Skitmore, M., Wang, F., & Forsythe, P. (2017). Automated classification of construction site hazard zones by crowd-sourced integrated density maps. Automation in Construction, 81, 328-339. doi:10.1016/j.autcon.2017.04.007 http://www.sciencedirect.com/science/article/pii/S0926580517303217

Stochastic state sequence model to predict construction site safety states through Real-Time Location Systems

Published in Safety Science, 2015

利用实时定位系统预测施工现场安全状态的随机状态序列模型

Recommended citation: Li, H., **Yang, X.***, Wang, F., Rose, T., Chan, G., & Dong, S. (2016). Stochastic state sequence model to predict construction site safety states through Real-Time Location Systems. Safety Science, 84, 78-87. doi:10.1016/j.ssci.2015.11.025 http://www.sciencedirect.com/science/article/pii/S0925753515003252